
Coverage Criteria for Search
Based Automatic Unit Testing of

Java Programs

Ina Papadhopulli, Elinda Meçe
Polytechnic University of Tirana

DAAD: 15th Workshop “Software Engineering Education and Reverse Engineering”

Outline

• Unit test case generation

• Evosuite tool

• Coverage criteria

• Combination of multiple coverage criteria

• Experiments and results

• Conclusions

Automatic Unit Test Case Generation

• Two important techniques:

1. Search-Based Software Testing (SBST)

2. Symbolic Execution (SE)

• SBST: meta heuristics approach

• Genetic algorithm: most used optimization
method of SBST

Test Suite of Java Programs

• A test suite T is a set of test cases t: T = {t1, t2, . . . , tn}

• Test case t in unit testing: program that executes the
CUT

• Test case: sequence of statements t = {s1, s2, . . . , sm}

• The statements for Java test cases are:

1. Primitive

2. Constructor

3. Method

4. Field

5. Assignments

Evosuite

• Tool for automatic unit testing of Java programs

• Usage: Command Line or Eclipse plugin

• Input: Bytecode of the target class

• Output: JUnit test cases

• Technology: Genetic Algorithms

• Open Source

• www.evosuite.org

• Uses whole test suite generation: optimizes entire
test suites towards satisfying all goals at the same
time

http://www.evosuite.org/

SBST- Genetic Algorithms

Random Test Suites Genetic Algorithm Final Test Suite

Coverage Criteria

1. Line Coverage

2. Branch Coverage

3. Direct Branch Coverage

4. Output Coverage

5. Weak Mutation

6. Exception Coverage

7. Top-level Method Coverage

8. No-exception Top-level

Method Coverage

Coverage Criteria

1. Line Coverage

2. Branch Coverage

3. Direct Branch Coverage

4. Output Coverage

5. Weak Mutation

6. Exception Coverage

7. Top-level Method Coverage.

8. No-exception Top-level

Method Coverage

Fitness function with
guidance

No guidance fitness
function

Combination of coverage criteria

• Using more than one criterion to guide the
search.

• All criteria considered here are non-conflicting

• Fitness function of combined coverage
criteria: linear combination of each fitness
function

• How does search-based testing scale to
combinations of multiple criteria?

Research Questions

• RQ1: How does the combination of multiple criteria
affect the coverage of each criterion?

• RQ2: How does the combination of all the criteria
affect the mutation score of the suite?

• RQ3: Which of the criteria (except Weak Mutation)
used separately achieves the highest mutation score?

• RQ4: How does the number of mutants of the CUT
affect the mutation score?

• RQ5: How does multiple criteria affect the number of
suite’s test cases and their size?

• RQ6: How does the adding of weak mutation criterion
affect the size of the test cases?

Experiment/System characteristics

Operating System: Linux 32 bit

Memory: 1 GB

Processor: Intel Core 2 Duo CPU E7400 2.8GHz x 2

Experiment/Evosuite Usage

• Run from the command line

• Eclipse plugin is not currently available for Linux
OS

Experiment/Subject Selection

• Open source software

Project Name

No. of

Classes Source

MathPareser 48 SourceForge

MathQuickGame 25 SourceForge

java.util.Regex 92 jdk 1.8.0/src

Refactoring 87 SourceForge

Library 22 CodeCreator.org

StudentManagementSystem 24 CodeCreator.org

Total 298

Experiment/Subject Selection

• 120 classes are chosen randomly

• Each experiment is repeated 5 times to
overcome the randomness of the genetic
algorithms.

• For 6 classes, Evosuite quits without
generating any output.

• The results are in many cases affected by the
security manager of Evosuite (restrict test
execution)

Experiment/Parameters of GA

• Population size: 50 test suites

• Chromosome length: 40 test cases

• Probability of mutation: 0.75

• Probability of crossover: 0.75

• Search budget: 1min/5min

Research Question 1

• RQ1: How does the combination of multiple
criteria affect the coverage of each criterion?

Experiment: For each of the classes we run
Evosuite with the configurations:
1. All criteria with search budget of 1 min

2. All criteria with search budget of 5 min

3. Each criterion separately with search budget of 5
min

Experiment/Results
Table 1: Coverage results for each
configuration, average of all runs for
all CUTs

• RQ1: For criteria whose fitness
guides the search, the
performance between the
combination of all criteria and
each criterion separately
converges nearly to the same
value. For criteria with low
guidance the ALL - combination
increases the performance.

CRITERION

ALL

1min)

ALL

(5 min)

Only

one (5

min)

LINE 59.7 60.7 61.1

BRANCH 52.6 53.4 53.5

EXCEPTION 83.7 83.9 83.9
WEAK

MUTATION 62.4 69.7 74.3

OUTPUT 47.9 48.2 48.6

TOP-LEVEL 93.4 93.8 81
METHOD-

NOEXCEPTI

ON 89.6 90.7 80.5
DIRECT

BRANCH 49.8 53.1 52.8

Mutation Criterion

• It is the gold criterion in unit testing for
predicting suite quality by researchers.

• It is difficult to apply and computationally
expensive.

• Problems:

1. The number of mutants for a given system can be
huge

2. Equivalent mutants

Research Question 2/3

• RQ2: How does the combination of all the
criteria affect the mutation score of the suite?

• RQ3: Which of the criteria (except Weak
Mutation) used separately achieves the highest
mutation score?

Experiment: For each of the classes we run Evosuite
with the configurations:
1. All criteria with search budget of 5 min
2. All criteria (except Weak Mutation) with search budget of

5 min
3. Each criterion separately with search budget of 5 min

Experiment/Results

Table 2: Mutation scores for each
configuration, average of all runs for all
CUTs with search budget of 5 min

• RQ2: Given enough time the
combination of all criteria
achieves higher mutation score
than each criterion separately
(except Weak Mutation).

• RQ3: In our experiments the next
best criterion to achieve high
mutation scores is branch
coverage.

CRITERION

Mutation

Score

LINE 15.6

BRANCH 25.8

EXCEPTION 0.2

WEAK

MUTATION 28.3

OUTPUT 16.6

TOP-LEVEL 23

METHOD-

NOEXCEPTION 15.3

DIRECT

BRANCH 21.2

All (without

Weak Mutation) 24.5

All (5 min) 26.1

Research Question 4

• RQ4: How does the number of mutants of the
CUT affect the mutation score?

Experiment: For each of the classes we run
Evosuite with the configuration:

1. Weak Mutation criterion with search budget of 5
min

Experiment/Results

RQ4: Given the limited budget the number of mutants in the
CUT affects the mutation scores achieved by Evosuite.

0

5

10

15

20

25

30

35

40

45

50

0-100 100-150 150-200 200-250 250-300 300-350 350-400 >400

M
u

ta
ti

o
n

 S
co

re
 o

f
W

e
ak

 M
u

ta
ti

o
n

C

o
ve

ra
ge

Number of Mutants

Research Question 5/6

• Automatically generated JUnit tests need to
be manually checked in order to detect faults.

• RQ5: How does multiple criteria affect the
size of the test cases?

• RQ6: How does the adding of weak mutation
criterion affect the size of the test cases?

• Size of a test case: the number of statements
after the minimization (without assertions)

Research Question 5/6

Experiment: For each of the classes we run
Evosuite with the configurations:
1. All criteria with search budget of 5 min

2. All criteria (except Weak Mutation) with search
budget of 5 min

3. Each criterion separately with search budget of 5
min

(In 35 runs of Evosuite the minimization phase
timeout)

Experiment/Results
• Table 3: Suite size for each

configuration, average of all
runs for all CUTs with search
budget of 5 min

• RQ5: Using all the criteria
increases the test suite size
by more than 50% that the
average test suite size of
each constituent criterion
used separately.

• RQ6: Adding weak mutation
criterion increases the test
suite size approximately
with 20%.

CRITERION

Cover

age

Mutation

Score

Test

suite size

LINE 61.1 15.6 14.2

BRANCH 53.5 25.8 15.7

EXCEPTION 83.9 0 6.7

WEAK

MUTATION 74.3 28.3 19.4

OUTPUT 48.6 16.6 10

TOP-LEVEL 81 23 10.3

METHOD-

NOEXCEPTION 80.5 15.3 12.4

DIRECT

BRANCH 52.8 21.2 10.2

All (without

Weak Mutation) 59.7 24.5 22.3

All (5 min) 69.3 26.1 27.8

Conclusions

• Using multiple criteria increases the overall
coverage and mutation score with the cost of a
considerable increase in test suite length.

• A lot of improvements need to be made to enable
the usage of automation for unit testing support.

• To increase the coverage there is still necessary to
find different fitness functions or to adapt them
during optimization.

• There is the need to further investigate the
conditions that make certain problems more
difficult to be optimized with a genetic algorithm.

“Coverage Criteria for Search Based
Automatic Unit Testing of Java Programs”

Thank You!

Questions?

Suggestions?

